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Abstract

A one-dimensional problem of a uniform distribution width estimation from

data observed with a Laplace additive error is analyzed. The error variance is

considered as a nuisance parameter and it is supposed to be known or consis-

tently estimated before. It is proved that the maximum likelihood estimator

in the described model is consistent and asymptotically efficient and suffi-

cient conditions for its existence are given. The method of moment estimator

is also analyzed in this model and compared with the maximum likelihood

estimator theoretically and in simulations. Finally, one real-world example

illustrates the possibility for applications in two-dimensional problems.

Keywords: Maximum likelihood estimator, Method of moments estimator,

Measurement error, Laplace additive error, Uniform distribution

1. Introduction

How to estimate the support of a uniform distribution from the data mea-

sured with additive errors is the problem that comes from different appli-
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cations. Generally, if the object is measured with errors, it is complicated

to determine its edges by using the well known edge detection methods (see

e.g. [18]) and consequently, it is not easy to accurately estimate its dimensions

either. Such problems can arise, for example, when the object is observed

with a fluorescent microscope ([19]), a ground penetrating radar, ultrasound,

etc. The same type of model can be used in the problem of protein secondary

structure assignment ([9, 13]), detection of shapes in image analysis ([10]),

etc.

Figure 1: Real world problem: Estimation the size of colonies of black fungi ([10], [25])

To illustrate applications more precisely, let us mention the problem of

estimating the size of black fungi colonies on the basis of a monochromatic

image (see Fig. 1). Here we have seven colonies captured with errors and we

focus our attention on a diameter of each colony (see [10]). In Subsection 5.3

we give a complete analysis of this problem and present the results obtained

by the method presented in this paper.

The basic statistical model that we are going to use for our purpose is a
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parametric one and it is built for one-dimensional data in the data set. It is

a simple random sample (X1, . . . , Xn) from the distribution that is a mixture

of two independent random variables U and Y

X = U + Y,

where U is uniformly distributed on the segment [−a, a], a > 0, and Y is the

error variable. In this setting, the estimation of the parameter a means also

the estimation of the boundary points.

Boundary estimation in the presence of measurement errors is a problem

extensively treated in literature in different contexts (see e.g. [6, 15, 16, 17]).

Although this problem generally can be treated as a classical deconvolution

density estimation problem (see e.g. [4, 7, 8, 24, 26]), these methods usually

face problems at density discontinuity points. That is why the modified ker-

nel estimator has been proposed in [27] if the boundary points are of interest.

Also, in [6] a diagnostic function which is proportional to the derivative of

the deconvolution kernel density estimator has been optimized in order to

estimate the boundary points. However, some computational problems for

an easy application remain, for instance the choice of bandwidth which is

very important for a good performance of any kernel estimator.

Here we discuss a completely different approach which assumes the error

distribution type to be known. Similar models have been analyzed in [1, 2,

3, 23]. In these papers, the basic model assumes that the distribution of the

part U is uniform on an interval and the distribution of the part Y , which is

considered an error, is Gaussian. The maximum likelihood approach applied

in the aforementioned papers shows that the length of the uniform support

can be estimated consistently and in an asymptotically efficient way even
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if we have the added Gaussian error part in the data. Also, the asymptotic

variance of the estimator is calculated so we can construct confidence intervals

and statistical tests about the length of the uniform support in a classical

parametric way.

However, the estimation procedures based on the ML estimator from the

mentioned papers are shown to be very sensitive to outliers in applications.

Unfortunately, the outliers are often present in images, so we tried to con-

sider the estimation procedure which is less sensitive to outliers and allows

a parametric approach at the same time. As expected, the ML estimator

derived from a similar model but with a Laplace error distribution fulfilled

our expectation.

In this paper, we present results which are based on the assumptions that

U is uniformly distributed on the interval [−a, a] for some a > 0, which is to

be estimated, and Y is a Laplace random variable with a location parameter

µ = 0 and a scale parameter λ > 0.

If U is uniform with a density function

fU(x|a) =

 1
2a
, x ∈ [−a, a]

0, else,
(1)

and Y has a Laplace distribution with a location parameter µ = 0 and a

scale parameter λ > 0 i.e. a density function

fY (x|λ) =
1

2λ
e−

|x|
λ , (2)

then a density function for X has a form

fX(x|a, λ) =
1

2a

(
G

(
x+ a

λ

)
−G

(
x− a

λ

))
, (3)
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where

G(x) =

 1
2
ex, x < 0,

1− 1
2
e−x, x ≥ 0.

It can be easily shown that the limiting density for λ tending to zero is

uniform on [−a, a] and for a tending to zero it is Laplace with a location

parameter µ = 0 and a scale parameter λ > 0.

Here we consider the estimation problem of the uniform support [−a, a]

in case when the scale parameter λ > 0 is known or consistently estimated

before.

The paper is organized as follows. In Section 2, we give some useful

properties of the model density function that we use in Sections 3 and 4

where we discuss properties of estimators obtained by the method of moment

(MM) and the maximum likelihood (ML) method, respectively. We prove

consistency, derive asymptotic variances of estimators and give conditions on

the data that guarantee the existence of the MM and the ML estimators.

In Section 5, we give different numerical examples. First of all, MM and

ML estimators are compared in simulations. Further, we give the simulation

results for the ML estimator which include bias, MSE, the length of the

confidence intervals and the cover rate for small and large data sets. In

order to discuss robustness we simulate data from the model with Gaussian

error (see [1]), but we replace some data with outliers. It is shown in this

example that, in the presence of outliers, the ML estimator based on Laplace

errors behaves much better than the ML estimator based on Gaussian errors.

Finally, we apply our approach to the problem of detecting circular shapes of

black fungi colonies, which was presented in [10]. The last Section is devoted

to concluding remarks.
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2. Properties of the log-likelihood function

In this section, we derive several useful technical properties of the density

fX(x|a, λ), a, λ > 0 and the corresponding log-likelihood that will be used

in the sequel. As usual, we use upper and lower case to denote a random

variable and its realizations, respectively.

First of all, let us notice that the density function (1) is even and contin-

uous on R. We can also represent it in the form

fX(x|a, λ) =
1

2a

 e−
|x|
λ sinh a

λ
, |x| ≥ a,(

1− e−
a
λ cosh x

λ

)
, |x| < a.

(4)

As a consequence, the function

x 7→ ϱ(x, a, λ) : = log fX(x|a, λ)

= − log(2a) +

 − |x|
λ
+ log sinh a

λ
, |x| ≥ a,

log
(
1− e−

a
λ cosh x

λ

)
, |x| < a,

(5)

is also even and continuous. The following property is obvious.

Property 1. Let the values a, λ > 0 be fixed.

lim
x→a

ϱ(x, a, λ) = − log(2a)+log
(
sinh

a

λ

)
−a

λ
= − log(2a)+log

[
1− e−

a
λ cosh

a

λ

]
.

In what follows we summarize some additional important properties of

the model log-likelihood function that we need in the next sections.

Property 2. Let the values x ∈ R, λ > 0 be fixed.

a) For all x ∈ R, the function a 7→ ϱ(x, a, λ) is continuous on (0,∞).

If x ̸= 0, then

lim
a→|x|

ϱ(x, a, λ) = − log(2|x|) + log

(
sinh

|x|
λ

)
− |x|

λ
.
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If x = 0, then

lim
a→0+

ϱ(0, a, λ) = − log(2λ).

b) For all x ∈ R,

ϱ(x, a, λ) ≤ lim
a→0+

ϱ(x, a, λ)

lim
a→0+

ϱ(x, a, λ) = − log(2λ)− |x|
λ

≤ lim
a→0+

ϱ(0, a, λ).

c) The function a 7→ ϱ(x, a, λ) is continuously differentiable on (0,∞),

c(x, a, λ) :=
∂ϱ(x, a, λ)

∂a
=

 − 1
a
+ 1

λ
coth a

λ
, 0 < a ≤ |x|

− 1
a
+ 1

λ

cosh x
λ

e
a
λ−cosh x

λ

, a > |x|,

and

lim
a→|x|

c(x, a, λ) = −1

a
+

1

λ
coth

a

λ
.

Property 3. For fixed λ > 0, the function (x, a) 7→ c(x, a, λ) is bounded,

i.e.,

|c(x, a, λ)| < 1

λ
, for all x ∈ R, a > 0.

Since Properties 1 and 2 are obvious, we shall prove only Property 3.

Proof of Property 3. The statement for 0 < a ≤ |x| follows immediately

from the inequality
∣∣− 1

u
+ coth u

∣∣ < 1 for u ̸= 0 (Fig. 2)

For a > |x|, we have

|c(x, a, λ)| = 1

λ

∣∣∣∣∣∣ 1

e
a
λ

cosh x
λ
− 1

− λ

a

∣∣∣∣∣∣ .
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Figure 2: Graph of the function x 7→
∣∣− 1

x + cothx
∣∣

Classical analysis of the function u 7→ 1
eb

coshu
−1

− 1
b
, u ∈ [0, b], b > 0,

shows that it is strictly increasing for u ∈ [0, b]. So the function

u 7→ h(u, b) =

∣∣∣∣∣ 1
eb

coshu
− 1

− 1

b

∣∣∣∣∣ , u ∈ [0, b], b > 0

is bounded by numbers h(0, b) and h(b, b).

By analyzing functions b 7→ h(0, b) and b 7→ h(b, b) for b > 0 we see that

• h(0, b) and h(b, b) are strictly monotone for b > 0;

• lim
b→0+

h(0, b) = 1
2
, lim
b→∞

h(0, b) = 0, lim
b→0+

h(b, b) = 0 , lim
b→∞

h(b, b) = 1.

Thus, we see that |c(x, a, λ)| < 1
λ
for a > |x|, too.

3. The method of moments estimator

Let us suppose that λ is known. The second order MM estimator can be

calculated from the equation

m2 =
a2

3
+ 2λ2,
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where m2 =
1
n

∑n
i=1 x

2
i is the second sample moment. Thus, the MM method

estimator has an explicit form

âMM =
√

3m2 − 6λ2,

and can be calculated only if data satisfy the condition m2 ≥ 2λ2. The

asymptotic variance for âMM is then

Var âMM ≈ 1

5n

(
a+ 15

λ2

a

)2

.

If the parameter λ is also supposed to be unknown, then we can calculate

the MM estimator for a and λ from the expressions:

m2 =
a2

3
+ 2λ2, (6)

m4 =
a4

5
+ 24λ4 + 4a2λ2, (7)

where m4 =
1
n

∑n
i=1 x

4
i . Equations (6)-(7) have a positive solution if and only

if
9

5
≤ m4

m2
2

< 6,

and the solution has an explicit form:

âMM =

√
5m2 −

√
5
√
m4 −m2

2, λ̂MM =
1√
6

√
−2m2 +

√
5
√

m4 −m2
2.

4. The ML estimator

Let us denote the realization of the sample with x = (x1, . . . , xn). According

to (3), the likelihood function of the random sample model has the following

form

L(a, λ) := L(x|a, λ) =
n∏

i=1

fX(xi|a, λ) =
1

(2a)n

n∏
i=1

(
G

(
xi + a

λ

)
−G

(
xi − a

λ

))
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and the log-likelihood function for the random sample model is as follows:

ℓ(a, λ) :=
n∑

i=1

ϱ(xi, a, λ).

For fixed λ > 0, let us shorten the notation and define ϱ(x, a) := ϱ(x, a, λ)

and ℓ(a) := ℓ(a, λ).

4.1. The existence of the ML estimator

In the following theorem we give a simple sufficient condition on the data

that guarantee the existence of the ML estimator.

Theorem 1. Let xi ∈ R, i = 1, . . . , n be the data, and let λ > 0 be given.

The function a 7→ ℓ(a) is bounded from above on (0,∞). Particularly, if

xi ̸= 0, i = 1, . . . , n, there exists a⋆ ∈ (0,∞) satisfying

ℓ(a⋆) = sup
a∈(0,∞)

ℓ(a). (8)

Proof. Let us first prove that the function a 7→ ℓ(a) is bounded from above

on (0,∞). From the continuity of a 7→ ℓ(a), it is obvious that it is bounded

from above on every compact subset of (0,∞). Problems can occur only at

the domain boundaries, i.e., a → ∞ or a → 0+.

Since

lim
a→∞

ℓ(a) = lim
a→∞

m∑
i=1

log

(
1

2a

(
1− e−

a
λ cosh

xi

λ

))
= −∞,

and

lim
a→0+

ℓ(a) = −n log(2λ)− 1

λ

n∑
i=1

|xi|,

the function a 7→ ℓ(a) is bounded from above on (0,∞).
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It remains to show that the assumption xi ̸= 0 for all i = 1, . . . , n,

guarantees the existence of a > 0 such that

ℓ(a) > lim
a→0+

l(a) = −n log(2λ)− 1

λ

n∑
i=1

|xi|.

In order to do this, let us note that

ℓ(a) =
n∑

i=1

(
− log(2a) + log

(
sinh

a

λ

)
− |xi|

λ

)
,

for all a ∈ (0,min{|xi| : i = 1, . . . , n}) and min{|xi| : i = 1, . . . , n} > 0.

For a < x, we have

ℓ′(a) =
n∑

i=1

(
coth a

λ

λ
− 1

a

)
.

Since

lim
a→0+

1

a
ℓ′(a) =

1

3λ2
> 0,

there is a real number δ ∈ (0,min{|xi| : i = 1, . . . , n}) such that the function

a 7→ ℓ(a) is strictly increasing on (0, δ). Hence, for every a ∈ (0, δ) we have

ℓ(a) > lim
a→0+

ℓ(a).

From the computational aspect, it can be useful to mention that we can

continuously extend the log-likelihood function to a = 0. Thus, we can

consider the continuous function ℓ̃ : [0,∞) → R given by the formula:

ℓ̃(a) =

 ℓ(a), a > 0

−n log(2λ)− 1
λ

∑n
i=1 |xi|, a = 0.
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Since the function a 7→ ℓ̃(a) is continuous and bounded from above on [0,∞),

obviously there exists ã⋆ ∈ [0,∞) satisfying ℓ̃(ã⋆) = supa∈[0,∞) ℓ̃(a). Also note

ã⋆ =


a⋆ > 0, if there exists a⋆ > 0 such that ℓ(a⋆) = sup

a∈(0,∞)

ℓ(a),

0, else.

The next corollary follows immediately from the previous consideration

and from Theorem 1.

Corollary 1. Let xi ∈ R, i = 1, . . . , n be the data, and let λ > 0 be given.

Then the function a 7→ ℓ̃(a) is bounded from above on [0,∞) and consequently

there exists ã⋆ ∈ [0,∞) satisfying

ℓ̃(ã⋆) = sup
a∈[0,∞)

ℓ̃(a). (9)

4.2. Asymptotic efficiency of the ML estimator

In order to analyze asymptotic efficiency we will use conditions suggested

and partially proved in [5], which are also discussed and finally proved in

[28]. In fact, we will use the second set of sufficient conditions from [5] which

we quote in the sequel in terms of our notation. Also, we drop the parameter

λ from the function variable list to shorten the notation.
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Conditions for asymptotic efficiency

1. ϱ(x, a) is continuous in a through (0,∞). At every a0, there is a neigh-

borhood such that for all a, a′ therein

|ϱ(x, a)− ϱ(x, a′)| < A(x, a0)|a− a′|,

where Ea0(A
3) < ∞.

2. At every a, there exists ∂ϱ(x, a)/∂a for almost all x and it is not zero

almost everywhere. It is continuous in a, except at a finite number of

discontinuity points at which it has finite jumps of either sign.

3. The probability that the interval (a, a′) contains a discontinuity point

of ∂ϱ(x, a)/∂a is O(a′ − a) for any true value a0.

4. ∂ϱ(x, a)/∂a is assumed to be continuous on the right. For the repre-

sentation

∂ϱ(x, a)/∂a = c(x, a) + h(x, a),

where c(x, a) is continuous at every a and h(x, a) is a step function, it

is required that

|c(x, a′)− c(x, a)| < B(x, a0)|a′ − a|, Ea0(B
2) < ∞.

In addition to the above conditions, consistency should be confirmed. In

our model this can be done following Theorem 1 in [11], p. 223 (see also

[12]).

To prove consistency, let us spread the parameter space (0,∞) and con-

sider the whole R. Now we extend the log-likelihood function such that we

use the function:

ϱ⋆(x, a) =

 ϱ(x, |a|), a ̸= 0

− log(2λ)− |x|
λ
, a = 0.
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Also, let us adjust the notation with paper [11]. So, we define

ρ(x, a) := − log(ϱ⋆(x, a)).

The maximization problem in terms of ϱ⋆ can now be considered as a min-

imization problem in terms of ρ. The function a(·) from (A-3) in [11] is

denoted by α(·) to avoid confusion with the parameter.

The first two assumptions, (A-1) and (A-2), are obviously fulfilled in our

model. To consider other assumptions, let us denote by a0 the true value of

the parameter and note that

Ea0 |ρ(X, a0)| < ∞.

This can be checked by analyzing the integral which appears in the expec-

tation. Namely, this integral consists of two parts. The first one, on the

interval [−a, a], is finite as the integrand is continuous on this segment. The

second part, on the set (−∞, a) ∪ (a,∞), can be easily solved and is also

finite.

Assumption (A-3) from [11] requires the existence of a measurable func-

tion α(·) such that the quantity

γ(a) = Ea0 [ρ(X, a)− a(X)]

is well defined for all a. We choose α(x) = ρ(x, a0). To substantiate the

claim that γ(a) is well defined we note that

Ea0 |ρ(X, a)− α(X)| < ∞, ∀a ∈ R.

This is an immediate consequence of the mean value theorem and Property

3 from Section 2.
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According to the assumption (A-4) for the function γ(a) we need to show

the existence of the number a′ such that γ(a) > γ(a′) for all a ̸= a′. We

see that this condition is fulfilled by choosing a′ = a0 and the fact that we

consider a maximum likelihood estimator.

Assumption (A-5) consists of three parts. It demands the existence of a

continuous function b(a) > 0 such that

(i) inf
a∈R

ρ(x,a)−a(x)
b(a)

≥ h(x) for some integrable h;

(ii) lim
a→±∞

inf b(a) > γ(a0);

(iii) E

[
lim

a→±∞
inf ρ(X,a)−a(X)

b(a)

]
≥ 1.

If we choose b(a) = | log(2λ)|, fulfillment of this assumption is a con-

sequence of the fact that γ(a0) = 0, γ(a) < ∞, that the function (x, a) 7→

ρ(x, a) has a lower bound log(2λ) (Property 2, Section (2)) and lim
a→±∞

ρ(x, a) =

∞ for all x ∈ R.

Thus, the ML estimator for the parameter a in our model is consistent.

Regarding conditions for asymptotic efficiency quoted at the beginning

of this section, we see that the second and the third condition are obviously

fulfilled. The fourth condition is a consequence of Property 3 from Sec-

tion 2. Fulfillment of the first condition follows from Property 3 combined

with the mean value theorem. Thus, the ML estimator for the parameter a

in our model is asymptotically efficient which means that for any consistent

sequence ân = ân(X1, . . . , Xn) of roots of the likelihood equation (ân), the se-

quence
√
n(ân−a0) converges in law to the random variable with N

(
0, 1

I(a0)

)
distribution.
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Here

I(a) = − 1

a2
+

1

aλ2

∞∫
0

(φ(x+a
λ
) + φ(x−a

λ
))2

Φ(x+a
λ
)− Φ(x−a

λ
)

dx (10)

and the asymptotic variance of the ML estimator âml has the form

Var âML =
1

n

− 1

a20
+

1

a0λ2

∞∫
0

(φ(x+a0
λ

) + φ(x−a0
λ

))2

Φ(x+a0
λ

)− Φ(x−a0
λ

)
dx

−1

. (11)

Figure 3 illustrates rates of asymptotic variances for the MM and ML

estimators in our model.

0.2 0.4 0.6 0.8 1.0
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25
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ML-line

λ

Figure 3: Asymptotic variance multiplied by n for the MM and the ML estimator and

a = 1.

5. Numerical experiments and examples

5.1. Simulation study

A simulation study was conducted to analyze the quality of the ML estimator

in small (n = 30), relatively large (n = 300) and large (n=1000) samples.

N = 1000 replications were carried out for each sample size and different λ.
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Here we present results of the study where we kept a fixed at a = 1. All sim-

ulations were completed in R with the optim(method="Brent") optimization

procedure.

For discussion purposes we present a bias and an MSE of the ML esti-

mator as well as the average length of the likelihood based approximate 95%

confidence interval (LB.CI) and the cover rate (Tables 1, 2 and 3). Also,

in these tables, we add a column with the number of successfully computed

LB.CI in one thousand replications. Namely, an approximate 100(1 − α)%

confidence interval for a consists of all the possible values of a for which the

log-likelihood function drops off by no more than 0.5χ2
1(1 − α)1 units. It

means that the intersections of the straight line y = ℓ(âML)− 1
2
0.5χ2

1(1− α)

and the graph of the log-likelihood function should be computed. In small

samples it often happens that these two lines intersect only once, in which

case the LB.CI does not exist.

An approximate confidence interval can also be computed from the asymp-

totic distribution of âML. It was proved in Section 4 that âML is consistent

and asymptotically normal with the asymptotic variance (11). Also, we can

put âML in the variance formula without affecting the asymptotic distribu-

tion. If the LB.CI does not exist we suggest computing confidence intervals

in this way. Both methods produce approximate confidence intervals with

similar average lengths and cover rates for large samples but the LB.CI is

computationally more convenient.

Simulations confirm our expectations and theoretical considerations. In

1χ2
1(1− α) is the 1− α quantile of the χ2 distribution with one degree of freedom.

17



the presented model, the ML estimator is always better than the MM esti-

mator by the MSE (see Figure 4). It is also worth mentioning that we had

some cases where the MM estimator did not exist in simulations with huge

variances but we did not have existence problems with the ML estimation

procedure.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

λ

M
S

E

MM− dashed
ML− line

Figure 4: MSE for n = 1000 data, a = 1.

The results presented in Tables 1, 2 and 3 confirm the expected behaviour

of the ML estimator. Although the LB.CI cover rate is acceptable for all

cases, we face rather long confidence intervals for small sample sizes. It is

worth mentioning that, with small sample sizes, the alternative way of con-

fidence interval calculation (by using âML asymptotic distribution) assures

shorter intervals but with unsatisfactory cover rates. In our opinion, it is im-

portant to assure a large sample in order for the estimation procedure with

this approach to be reliable.
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Table 1: Simulation results for the ML estimator, a = 1, n = 30 data and N = 1000

replications.

λ Bias MSE LB.CI LB.CI LB.CI

No. of success Length Cover rate

1.000 0.025716 0.366073 206 2.154386 0.815

0.500 -0.009745 0.080511 766 1.064041 0.953

0.250 -0.011702 0.023240 999 0.566858 0.933

0.100 -0.034288 0.009456 1000 0.333181 0.952

0.050 -0.048648 0.007786 1000 0.272064 0.953

0.010 -0.066304 0.008849 986 0.479989 0.963

0.001 -0.061918 0.007250 780 0.894387 0.959

Table 2: Simulation results for the ML estimator, a = 1, n = 300 data and N = 1000

replications.

λ Bias MSE LB.CI LB.CI LB.CI

No. of success Length Cover rate

1.000 -0.014906 0.041377 924 0.761894 0.976

0.500 0.001246 0.007006 1000 0.322907 0.942

0.250 -0.000026 0.001846 1000 0.170317 0.952

0.100 -0.000077 0.000624 1000 0.093516 0.937

0.050 -0.000963 0.000261 1000 0.063908 0.951

0.010 -0.003812 0.000094 1000 0.031168 0.953

0.001 -0.006398 0.000080 1000 0.033283 0.945
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Table 3: Simulation results for the ML estimator, a = 1, n = 1000 data and N = 1000

replications.

λ Bias MSE LB.CI LB.CI LB.CI

No. of success Length Cover rate

1.000 -0.000610 0.010709 1000 0.407844 0.951

0.500 0.001185 0.002050 1000 0.175497 0.952

0.250 -0.000603 0.000544 1000 0.093249 0.953

0.100 0.000109 0.000175 1000 0.050940 0.949

0.050 0.000116 0.000075 1000 0.034782 0.958

0.010 -0.000314 0.000017 1000 0.015308 0.949

0.001 -0.001548 0.000008 1000 0.007442 0.964

5.2. Robustness

The fundamental reason why we conducted the Laplace distribution as an

error distribution in our model is a reasonable expectation that this model

is better for application in the presence of outliers than the model with

Gaussian errors. To confirm this expectation, we simulated 300 data from

the model of the same type but with Gaussian errors (see eg. [1]) where we

changed some data with outliers by the rules described in Table 4. We applied

two ML estimation procedures to this data set. The first was based on the

model with Gaussian errors (see e.g. [1]) and the second one with errors

following the Laplace distribution. Also, we applied these two estimation

procedures on the same type of data but with the error distribution that has

long tails. For discussion purposes in Table 4 we include results for data

simulated from the model of the same type but with scaled student errors

with four degrees of freedom and variance 1.
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Table 4: Simulation results in the presence of outliers. Error variance was kept fixed at

σ = 1, a = 2, n = 300 and N=1000 replications.

Simulatons Model with normal error Model with Laplace error

Bias MSE Bias MSE

normal errors

no outliers -0.007686 0.017691 0.092710 0.026495

normal errors

5 one-sided outliers 0.499169 0.267460 0.172122 0.051828

P (X > o) < 10−8

normal errors

10 two-sided outliers

P (X > o) < 10−8 1.10706 1.241221 0.238137 0.073474

P (X < o) < 10−8

scaled student errors

df=4 2.463928 15.522259 1.153521 2.161191

VarY = 1

For all simulations we chose a = 2 and the error variance σ = 1, which

means that we set the parameter λ in the Laplace error model to 1√
2
. The

empirical MSE and bias for N = 1000 replications are shown in Table 4. The

difference between estimation procedures is also illustrated in Figure 5. Our

results confirmed that the ML estimator which comes from the Laplace error

model gives much better results in the presence of outliers. In the case of

incorrectly specified error distribution, if it has heavy tails, both estimators

included in Table 4 seriously overestimate the targeted parameter a although

the model with Laplace errors gives better results.
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Figure 5: Distribution of estimators for n = 300 and 10 two-sided outlier.

5.3. Size estimation of the black fungi colonies

This real world problem illustrates the possibility of extension to a two-

dimensional case. It is motivated by biological research aimed at estimating

the size of colonies of black fungi that grow under different conditions ([25]).

Since these colonies grow approximately with the same rate in each direction,

it is reasonable to consider the problem of finding circles within an image (see

Fig. 6 (a)) of the surface and to estimate their diameter ([10]).

In order to separate data points into clusters, we use the method for

searching for a nearly optimal partition from [22], combined with the center-

based L1− clustering method (see [20]). An appropriate number of clusters

is seven, and it is estimated by the Silhouette Width Criterion index ([14]).

The corresponding nearly optimal partition is shown in Fig 6(b).

In order to determine the discrete approximation for the border of circles,

for each cluster we apply Algorithm 1.

22



(a) original data

50 100 150 200

50

100

150

200

I

II

III
IVV

VI

VII

(b) clustered data

Figure 6: Black fungi

Algorithm 1 Approximation of the circle border

Input: cluster π, the number of tiny strips nS.

1: Cut the data into nS tiny strips parallel to the x−axis.

2: Keep only the first coordinate of the data and make one data set from

each slide.

3: Centralize the data from the slide with the mean for this slide.

4: Apply the model described in this paper to each slide. Estimate the

parameter λ by the MM method. Calculate the average value of λ̂MM

through slides. Estimate the width of the uniform support with the ML

method using this value for λ.

5: Calculate the edges of the slide from this estimation, the slide mean and

the y−coordinate of the slide y−center.

6: Repeat the procedure by cutting the data into tiny strips parallel to the

y−axis and changing all steps in accordance to that.

Output: Approximation of the border of a circle.
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Figure 7: Approximation for the colony edge

Fig. 7 shows nS = 15 tiny strips parallel to the x−axis and nS = 15

tiny strips parallel to the y−axis. Large points represent the corresponding

approximation of the edge points for cluster (IV) (see Fig 6 b)) in the model

with Laplace errors obtained by Algorithm 1. From these edge points we can

estimate the circle radius by the least squares method (for more details, see

[1] and [21]). The results for all clusters are given in Table 5.

Figures 8 a) and b) show estimated circles for Gaussian and Laplace

model errors, respectively. The method described in [1] in Steps 4 and 5 in

Algorithm 1 has been used for Gaussian model errors.

Table 5: Estimated circle radii (in the same measurement units).

Radius/cluster (I) (II) (III) (IV) (V) (VI) (VII)

Laplace form error 22.9951 14.9327 25.5602 18.7622 25.5602 18.0291 26.6106

Gaussian form error 24.5689 16.2531 26.4455 19.54321 26.4455 23.3707 26.9301

Note that by applying the model with Gaussian errors, the resulting circle
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radii are less precise than in [10] due to the presence of outliers. At the same

time, the resulting circles obtained by applying the model with Laplace errors

obviously give good results.

(a) (b)

Figure 8: Size estimation of black fungi colonies. (a) Estimated circles (Laplace form error

model) (b) Estimated circles (Gaussian form error model)

6. Concluding remarks

Once we have data that is known to be collected from disjoint bounded

regions but measured with an additive error, the estimation of these region’s

boundaries becomes a problem. This is a typical measurement error problem

that can be treated in different contexts (e.g. deconvolution problem, mixed

effect problem). We are considering a combination of a one-dimensional

parametric model and a computational procedure that was suggested in [1],

[2], [3] and [21].
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Previous researches that have been described in [1], [2], [3] and [21] guar-

antee that a simple symmetric one-dimensional model can serve as a base for

the boundary reconstruction even if the region is multidimensional. However,

the procedures presented in these papers are very sensitive to the outliers.

Here we have presented an approach similar to the procedures described in

the mentioned papers but less sensitive to the outliers. We have improved

robustness by changing the error distribution in the basic model from the

normal distribution to the Laplace distribution.

The results confirm our expectations that came from the classical M-

estimator theory. As it is well-known, the robustness of the specific M-

estimator depends on the form of the ρ-function that is used as a criterion

function in the definition of this M-estimator. The maximum likelihood esti-

mator is also an M-estimator. If the ρ-function is defined as a log-likelihood

from the model with a normal error we create an M-estimator which is more

sensitive to outliers than if the ρ-function is defined as a log-likelihood from

the model with a Laplace error, by nature of these distributions. Obviously,

other ρ-functions in the definition of an M-estimator can be considered in or-

der to control robustness, but this approach requires further detailed study

in future research.
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